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REPORT 1067 

GENERALIZATION OF BOUNDARY-LAYER MOMENTUM-INTEGRAL EQUATIONS TO 
THREE-DIMENSIONAL FLOWS INCLUDING THOSE OF ROTATING SYSTEM 

By ARTUR MAQER 

SUMMARY 

The hlavier-Stokes equations of motion and the equation of 
continuity are transformed so as to apply  to an orthogonal 
curvilinear coordinate system rotating with a uni jorm angular 
velocity about an arbitrary axis in space. A usual simp1i;fica- 
t ion q f  these equations a s  consistent with the accepted boundary- 
layer theory and  an integration of these equations through the 
boundary layer result in boundary-layer momentum-integral 
equations f o r  threedimensional f lows that are applicable to 
either rotating or nonrotuting j luid boundaries. 

These equations are simpli5ed and an approximate solution 
i n  closed integral f o r m  is obtained f o r  a generalized boundary- 
layer momectum-loss thickness and f low  deflection at the wall 
in the turbulent case. 

A numerical evaluation of this solution carried out .for data 
obtained in a curving nonrotating duct shows a f a i r  quantita- 
tive agreement Wzth the measured values. 

The f o r m  in which the equations are presented i s  readily 
adaptable to cases of steady, threedimensional, incompressible 
boundary-layer-flow like that over curved ducts or yawed wings; 
and  i t  also m a y  be used to describe the boundary-layerJow over 
various rotating surjaces, thus applying to turbomachinery, 
propellers, and helicopter blades. 

L 

1 

INTRODUCTION 

The development of the boundary layer on the various 
parts of turbomachinery (compressors and turbines), heli- 
copter blades, propellers, and in curved ducts is influenced by 
centrifugal and Coriolis forces in addition to the pressure and 
viscous forces. As a result of these forces, the flow in the 
boundary layer not only has the characteristic velocity 
deficiency but also has, because of this velocity deficiency, 
direction different from that of the flow outside the boundary 
layer. Thus the behavior of the boundary layer in three- 
dimensional flow may be quite unlike the behavior in two- 
dimensional flow. The effect of these additional forces on the 
boundary layer has been realized for some time and the 
observed discrepancies in the boundary-layer behavior have 
usually been explained only in a qualitative manner as, for 
example, in references 1 to 4.  

The literature concerning the theoretical aspect of the 
three-dimensional boundary-layer flow is meager. For the 
laminar case most of the published work has been carried out 
in connection with the yawed wing (references 5 to 7).  For 
the turbulent case, although a number of researchers have 
established the general form of the differential equations 

applicable, no actual solutions of these equations have been 
obtained. Tetervin, for example, presents boundary-layer 
momentum-integral equations in three dimensions for a fluid 
of variable density and viscosity (reference 8). Gruschwitz 
establishes the momentum-integral equations for boundary- 
layer flow along an arbitrarily curved streamline in reference 9. 
Burgers gives the differential equations on the develop- 
ment of boundary layers in the case of axially symmetric 
flows having a rotational component (reference 10). Prandtl, 
in addition to presenting a form of three-dimensional 
momentum-integral equations, suggests the general procedure 
that could be followed to obtain a solution (reference 11). 
Experimental data are similarly lacking. In spite of con- 
siderable literature search, only the data of Gruschwitz 
(reference 9) for a curved duct and the data of Kuethe, 
McKee, and Curry (reference 12) for a yawed wing were 
found. 

As a result of research on this problem a t  the NACA 
Lewis laboratory, the boundary-layer momentum-integral 
equations are derived and presented herein for a set of 
orthogonal curvilinear coordinates, which may or may not 
be rotating about an arbitrary axis in space and can be laid 
out along a streamline of the potential flow. The so gen- 
eralized equations are then transformed by use of an assumed 
velocity distribution and friction law for turbulent boundary 
layer so that an approximate solution can bc obtained for 
the boundary-layer momentum thickness and the direction 
of boundary-layer flow. Finally, a numerical solution is 
carried out for the Gruschwitz data in order to make a 
comparison between the estimated and actual measured 
values. 

The equations as given in their generalized form are 
readily adaptable to cases of steady, three-dimensional, 
incompressible boundary-layer flow involving centrifugal 
and Coriolis forces. The approximate solution, however, 
has been carried out only for the turbulent boundary layer, 
because in most of the aerodynamic configurations, where 
these equations apply, transition from laminar to turbulent 
flow occurs comparatively early in the flow process. A 
laminar form of the approximate solution can be obtained 
by simple substitution of a suitable velocity profile and 
friction law. 

I t  should be noted that whereas the differential equations 
describe the flow phenomena with only the accepted simpli- 
fications, the approximate solution depends to some extent 
on the assumed boundary-layer velocity profiles and the 
relation for friction. Both of these assumptions were made 

1 Supersedes NACA4 T N  2310. “Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System” by -4rtur 
Mager, 1951. 
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on the basis of the (lata of Gruschwitz (rcfcrence 9) only, 
because the data of rcfcrerice 12 were not adaptable to  
extensive computations for thc purpose of this analysis. 
The measurements of Gruschwitz, on the other hand, have 
certain shortcomings as they were obtained in a nonrotating 
channel formed by two circular-arc shaped walls. Thus the 
generality of the velocity profiles measured by Grusvhwitz 
is in question. A revision of the approximate solution can 
therefore be expected when more data become available. I n  
addition, any speculation on the occurrence of boundary- 
layer separation (which by definition is a special form of a 
velocity profile) would be absolutely meaningless; no further 
mention will therefore be made of this phase of the problem. 

SYMBOLS 

The following symbols are used in this report (the 
dimensions are given in right-hand column) : 
A constant occurring in second ap- 

proximation for 0 
U resultant acceleration vector in 

fixed (inertial) system 
a0 resultant acceleration vector in 

Cartesian c*oortlinate system 
B constant occurring in second ap- 

proximution for t3 
B position vector of particle 

- 

- 

dfi curvature of x-axis (fig. I ) ,  - 
d X  

C 

d constant 2 6 

K,(sj 

P,,,PIU, . ' . rate-of-strain components 
F resultant-force vector acting on 

particle 
f x, . f  1- ,fz components of body forces per 

unit mass 
G function describing boundary- 

layer velocity profile, also taken 
1 

~ 

as (i)" 
function describing boundary- 

layer velocity profile, also taken 

as (1 -;y 

qiinntiticts describing relations (0) 
among various c.hnr.ac~ tcristic. 
loss tliivkncsscs in boundary 
layer 

transformation coefficients (0) 
length 
parameter determining nature of (0) 

boundary-layer equations 
mass 
static pressure ( rn l -YL '  J 

components of stress per unit ( m - V 2 )  
area in Cartesian coordinate 
system 

resultant velocity vector 
perpendicular distance of particle 

from axis of rotation 
0,lJ Reynolds number based on e=, __ 

radius of circle 
V 

total path length .Is d.c 

arc length 
time 
values of u, 0, and w outside 

boundary layer 
velocities in Cartesian coordinate 

system 
time averaged velocities in curvi- 

linear coordinate system 
Cartesian coordinate system 
orthogonal curvilinear coordinate 

function used in transformation 
boundary-layer deflection angle 

measured from direction of re- 
sultan t skin-fric tion s tress to 
direction of flow outside bountl- 
ary layer 

angle between X-axis and tangent 
to x-axis 

boundary-layer thickness 
clisplacement thicknesses in three- 

dimensional boundary layer 
measure of boundary-layer deflec- 

tion, tan a 
slope of characteristic line 
ge ner  a1 iz c d bound a r y -1 aye  r 

mom e n t u  m-1 o ss t h i  c kn  e ss, 
&Re l4 

momentum-loss thicknesses in 
three-tlimcnsional bo~ntlary 

system 

layer 
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x variable of function +, (I ) 

V kinematic viscosity (13-1) 
5 ,  'I, r 
P density (rnlt3) 
us, TIyr . . . apparent stresses existing in tur- (mZ-1t-2) 

T o  shear stress a t  wall (ml-9-2) 

components of vorticity vector 

bulrnt flow 

9 arbitrary function satisfying 
equation (39) and boundary 
conditions 

w angular velocity ( t - ' )  
wx , WY , wz (t- ') 

WI, w y ,  wz components of vector w in curvi- ( t - ' )  

Subscripts : 
z initial value 
c r-dircc tion 
z z-direc tion 
I, I1 order of approximations 

designations, see figure 2. 

components of vector w in Car- 
tesian coordinate system 

linear coordinate system 

For Gruschwitz data-point designations and streamline 

I 

Z, f Z  
I 

FIGURE 1.-Transformation from Cartesian coordinates 1, Y, Z to orthogonal curvilinear 
coordinates x, y, L. 

DERIVATION OF BOUNDARY-LAYER MOMENTUM-INTEGRAL 
EQUATIONS 

The equations for steady flow of a fluid having constant 
density are derived in a Cartesian coordinate system X, Y,Z 

1 

T- 
/5 cm 

(a) Channel and measuriag plate seen from below. 

sections indicate regions of potential-fiow breakdoa n. 

F I G 1  R F  2 - - E q r r i m ~ ~ t a l  %'tup of Oruschaitz (from figs. 1 and 5 of referenrp 9). 

(b) Measuring plate seen from below, showing pomt and streamline designations. Shaded 

rotating with uniform angular vrlocity about an arbitrary 
axis in space. These equations are then transformed to an 
orthogonal curvilinear coordinate system s,y,z such that 
the z-axis can be placed along any convenient path in the 
XZ-plane, which is considered as a plane of a wall. These 
equations are then simplified in a manner consistent with 
the boundary-layer theory. If the path is chosen so as to 
match a streamline of the potential flow, only one velocity 
will exist outside the boundary layer, that along the stream- 
line. Furthermore, the changes in boundary-layer quantities 
in a direction other than that along the streamline are ex- 
pected to be relatively small in comparison with the changes 
along the streamline. Additional simplifications may thus 
be possible. Finally, integration through the boundary 
layer gives the generalized form of momentum-integral 
equations for three-dimensional flows that may or may not 
involve rotation of the system. 

Equations for steady flow of fluid with constant density 
in rotating Cartesian coordinate system.-The Navier- 
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Stokes equations of flow for a fixed Cartesian coordinate 
system X,Y,Z (reference 13, p. 576) are 

and the equation of continuity is 

It is now assumed that this Cartesian coordinate system is 
rotating with a uniform angular velocity w and that the 
observations of the motion of the fluid particles are still 
made from a position rigidly attached to the same system. 
The velocity 7, and acceleration a, are as seen by the ob- 
server, that is, they are relative to the X,Y,Z system. 
Because of the rotation, however, the X , Y , Z  system is not 
an inertial system (reference 14, p. 53) and thus the second 
law of motion holds only with respect to acceleration Z 
relative to some other system that is nonrotating, 

- 
ma =k' 

In terms of a, then (reference 14, p. 104), 

m n , + m w ~ ( w ~ ~ ) + 2 r n w ~ ~ ~ = ~  

Here m w X  ( w X T )  represents the centrifugal force and 
2rnwX?, is the Coriolis force. 

Thus for a Cartesian coordinate system rotating with a 
D U(, D V,) uniform angular velocity w ,  the expressions for ~ D t ' x '  

must be modified by proper components of the and 

Coriolis and centrifugal accelerations. For steady flow, the 
component accelerations as referred to a rotating Cartesian 
coordinate system are therefore 

D 14' 
Dt 

(3c) 

The equation of continuity, which does not involve any 
accelerations, remains the same. 

Transformation to orthogonal curvilinear coordinate sys- 
tem.-Transformations similar to those of Gruschwitz 
(reference 9) are used as indicated in figure 1 with the pre- 
caution that the system remain right-handed. 

1 X =  cos p d z + z  sin p 

~ = Z , + z c o s p  J 

Z,=constant-J sin p ( ~ x  

where 

and 
a=p(x)  

Use of these transformations permits an arbitrary curva- 
ture of the x-axis in only one plane, the XZ-plane. Thus 
the solution is somewhat restricted. In  two-dimensional 
boundary-layer investigations, however, it is found that the 
boundary-layer equations are ilnaffected if the radius of 
curvature in the XI7-plane is largc as compared with thc 
boundary-layer thickness (reference 15, p. 120). In  three- 
dimensional boundary layer the same limitation will 
probably apply providing, of coursc, thc values of w,, w y ,  
and o, are properly adjusted to take care of this additional 
curvature. Setting 

(1 P 
dX e=- (curvature of z-axis) 

gives 

bX . -0 --=smp bX 
-=(l + c z )  cos p -- bX 
bX ds 

= O  
b P 
B X  

The elements of length a t  (2, y, Z )  in the direction of the 
increasing coordinates are (reference 15, p. 101): 

Thus, 

and so forth, 

(tZs)2= (1 + c z y  (dry+ (dy)'+ (dz)' 
and 

h , = ( l + c ~ )  h?=1 hs=I 
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The expressions for the linear accelerations can be written 
directly, as given in reference 13 (p. 158). (It should be 
noted that the h values herein are reciprocals of those in 
reference 13.) The components of a gradient now are 

whereas the components of ?joX w remain 

I Thus the accelerations in the rotating z,y,z system are 
written as 

+ 2  ( ~ , W - w , v > - . -  1 w'R - bR 
hl a x  

D V DE- And the expressions for __ and ~ follow from symmetry. Dt Dt 
The equation for the divergence now has the form 

whereas the components of the curl ?jo are 

I n  order to obtain the viscous terms the preceding expres- 
sions are used in the expansion of 

v [grad (div &)-curl (curl qO)] 

If equations (5) are substituted into these general expres- 
sions and the differentiations are carried out, the equations 
for flow in an orthogonal curvilinear coordinate system rotat- 
ing with an angular velocity w are obtained. The body forces 

L are neglected here. 

1 bR UW-- 

1 1bP 1 a2u 

u au dl; ah- 
1 SZC z + V - +  b?l w-+- a2 l+zc 1 +zc W2Rbz+ 

2(wuT,t7-w2v)=-- - - l+cz p i 3 z + v [ m , , -  

+ 1 d%' z b V d c  
by  '[(~+cz)~ a x 2  ( ~ + c z ) ~  d~ d z  

-__ ___ - - - 1 bP+ 

bR 
d, 

b2V b2V 
-+bzZ+ by2 l+cz bz 

C2- w 2 R y +  

1 bP 1 b2" 2(wrV-wul ' )= - -  -+v 
P d Z  [OTi3ds?- 

1 bU bV d W  rnTc -o --+-.-+-+-- 
l + c z  bx by bz 1 S C Z  

In  the general orthogonal coordinates, the expressions for 
the rate-of-strain components are 

1 d W  U bh e, ,=2 - -+- 3+-- ~ 

(h3  bz h.,h, d x  h2h3 b y  

---( h l b  U )+--(-) h 3 b  W 
e2z-h3 dz h, h,  bx h, 

The viscous terms in equations (sa), (6b), and (6c) may be 
expressed using the rate-of-strain components as 

1 b2U 

-+- - c dU uc2  W d c  -___-___ 
l + c z  bz (lSCZ)2+(1Scz)a ds (1+cz)2 dz 

=v[- l+cz 1 -+--+-+-- be, a x  be, b y  berI bz 1+cz 

+?+dz'+rn a"] &- 
1 b2V z bVdc  b2V b2V ~ - _ _ _ _ _ _  

'[(~+cz)' ( ~ + c z ) ~  bs d r  by 

1 
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(ezz-ezz)] (7c) 
1 -+-+--- bezz beuz bezz c 

l + c z  dz by bz l + c z  = v [  

Equations (6) are directly applicable to the laminar flow. 
For turbulent flow, because of the velocity fluctuations it is 
necessary to modify the stresses by addition of the so-called 
Reynolds' stresses. Thus, making use of the parallel form 
in equations (7), the Navier-Stokes equations of motion for 
turbulent flow may be written in terms of the apparent 
stresses as 

UM'- u bU bU bU c -+v-+n7-+- l + c z  bz by b z  l + c z  

bIZ 1 1 b P +  w2R - + 2 (w,  M' - W, V)= -__ - - l + c 2  bx l + c z  p bx 
1 

2 ( w z V - w v b 3 = - -  1 bP +-[---=+ 1 - 1 br,, 
p dz p l + c z  

Simplification for flow within boundary layer.-Equa- 
tions ( 6 )  and (8) are equivalent to the complete Navier- 
Stokes equations. Within the boundary layer, however, 
certain terms whose contribution is relatively unimportant 
can be neglected. If the y-axis is taken as normal to the 
wall, the boundary-layer flow then takes place over the 22- 
plane (or the XZ-plane). All terms are now made dimen- 
sionless by referring the lengths to some body length, the 
velocities to their free-stream values, and so forth, as ex- 
plained in reference 16 (p. 45), and all quantities of the order 
of magnitude of 6 or smaller are neglected. Furthermore, 
because the boundary-layer flow along a definite path 
z=O is of interest, additional simplifications are possible. 
Setting z=O restricts the equations, because the general 
boundary conditions (not on the x-axis) cannot be satisfied. 
It will subsequently be seen, however, that these general 
boundary conditions are unnecessary in the solution of the 
final equations. These simplifications yield the Navier- 
Stokes equations for flow within the boundary layer in a 

rotating orthogonal curvilinear coordinate system evaluated 
at  z=O, 

au bu au 1 b P  dB 
bz by bz P b X  

u -+ v -+w ---CCUW= - - - - - -+W~R~--~~,W+ v 

bR 1 b P  -w'R -+~(U~U-C+W)=-- - 
bY P by 

U-+V bw -+w bw - - u ~ c = - - - + w ~ R - + ~ w , u + v  bw 1 ar bR 
bx b y  bz P 32 a z  

for the laminar case. For the turbulent boundary layer, a 
corrwmondine set of ecluations is obtained with the substitu- 

. Y  

Equation (9b) shows, as pointed out in reference 10, that 
because all the terms on the left-hand side of the equations 
are of the order of magnitude of one, within the boundary 
layer, P can vary a t  most by an amount of the order of 6. 
It is reasonable then to neglect this variation and consider 
P solely a function of the flow outside the boundary layer. 
Thus, if z is chosen to coincide with a streamline of the flow 
outside the boundary layer, V= W=O, and by integration 
of equation (sa) with the effect of viscosity ncglected thc 
following relation is obtained : 

(1 0) 
1 1 
2 2 P=constant-- pU2+- p w 2 R 2  

which is a form of the equation of Bernoulli. 
Furthermore, because outside the boundary layer the flow 

with respect to some nonrotating set of coordinates is irrota- 
tional with reference to the rotating coordinates the com- 
ponents of the vorticity vector become 

(1 1)  I .$= -2w ,  

q = - 2 w ,  

j-- - 2 w ,  

This assumption of irrotationality is not always true and in 
some applications, such as the later stages of an axial com- 
pressor, it cannot be used. As long as vorticity is distributed 
according to some definite pattern, however, a relation be- 
tween the components of vorticity and the components of 
rotational velocity may be found and substituted for equa- 
tions (11). 

Substituting again in the expression for the components 
of vorticity gives 

- (1 + c z )  c-- M' 
- 2 w  y-1+cz -~ r b z  bz d l  

And for z=O, U'=O, which is along the streamline, the 
expression for curvature becomes 
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The equat)ion of continuity rcmains 

d u  bv dw -+-+ -- + wc = 0 bx by 3-7 

Generalized boundary-layer momentum-integral equa- 
tions.-In order to obtain the boundary-layer niomentum- 
integral equations, equations (9a) and (9c) are integrated 
with respect to y through the boundary la>-er to some con- 
stant height d such that 

d>6 

and 

These equations apply equally well for the laminar or tur- 
bulent boundary layer, with the value of r0 representing the 
shear stress a t  the urall accordingly adjusted. By suitable 
use of equations (12) and (13), these equations may be 
transformed to 

and 

The following definitions are now introduced: The mo- 
mentum thickness in the x-direction of the flow in the x- 
direction, 

d 
e,=&L (CT-U) u dy (16) 

The displacement thickness in the x-direction, 

The momentum thickness in the z-direction of the flow in 
the z-direction, 

The displacement thickness in the -.-direction, 

d 
w d y 

The momentum thickness in the z-direction of the flow in 
the x-direction, 

The momentum thickness in the x-direction of the flow in 
the z-direction, 

(21) 
1 d  Ozz=pl wudy 

All these thicknesses, as in two-dimensional boundary- 
layer theory, have a dimension of length. Furthermore, 

(2 2) 

With the use of definitions (16) to (21) and equation (22), 
equations (15a) and (15c) reduce, for z=O, to 

and 

Reduction of equations to forms obtained by other 
investigators. -If only two-dimensional flow exists, that 
is, if c=O, w=O, and w=O, then equation (23b) vanishes and 
equation (23a) becomes an ordinary KBrm&n momentum- 
integral equation 

If w=O, that is, if the system is nonrotating, equations 
(23a) and (23b) become identical with the eqnations of 
Gruschwitz (reference 9). 

Setting c=O in equations (9a) and (9c) makes these equa- 
tions identical with the equations of Burgers (reference lo), 
who carried out his derivation for a Cartesian coordinate 
system. 

Finally, if the system of coordinates is chosen so as to 

maintain the right-hand rule and c is set equal to -7 thus 

establishing the x-axis as a circle, then - =1 and because 

of axial symmetry all derivatives with respect to x vanish. 
The coordinates are now assumed to be in a fluid that is 

1 
r 

dz 
dr 
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motionless a t  great distance from the surface of the rotating 
immersed disk. Thus, 

u= U'= 0 w = o  

Integration of equations (sa) and (9c) givcs, after some 
manipulation. 

and 

which are identical with equations of Khrmhn for the 
rotating disk (reference 17). 

A P P R  O X I M  AT E S 0 L U T  I O  N OF MOMENTUM-INTEGRAL 
EQUATIONS FOR TURBULENT BOUNDARY LAYER 

Transformation and reduction of dependent variables. - 
In  order to obtain a solution of the momt.ntiim-intcgru1 
equations, additional relations are needed describing the 
velocity profiles existing in the boundary laycr and t h  
friction at the wall. 

Ki th  thr use of a suggestion by Prandtl (rcfcrcncc~ I I ) ,  
tlie expressions for u and w that will bo u s t d  are 

(24) 

with boundary conditions on 0 and g 

for y=6, c= 1, g=o 

for y=O, 0 5'1 

and with e defined as 
€ = t a n  a 

where a is the angle between the direction of the resultant 
skin-friction stress and the direction of the flow outside the 
boundary layer. Because of this definition of E, g = l  a t  
y = 0 because 

bW 

liln Ey = e 
v 4  a u  

bY 

7 0 , a =  € 7 0  r ( 2  6) 

- 

~ 

or 

3lathematically, such use oi e implies a linear variation of 
w with e and makes possible the dissociation of the w velocity 
profile from its scale and direction. Because the flow must 
change direction in tlie boundary layer from that a t  the wall 
to that in the free stream, there is no reason to assume that 
such a dissociation is actually possible. In  other words, 
there is no reason to believe that g should be a function of 
(y/6) alone and not of e as well. In accordance with reference 1 1, 
however, this approximation is certainly adxnissiblc for 
small values of E and gives results of qualitative accuracy 

for moderately large e. In addition, in order to check this 
l w  assumption, the value of - -, for several experimental 
e U  

velocity profiles and values of e ranging hom 0.216 to 
0.670, as obtained from reference 9, is plotted against y/6 in 
figure 3 .  The results of this plot indicate indeed that Gg is 
independent of e. 

.80 

.60 

40 

.20 

h 
c, 
diL.10 
-1b.08 

.06 

.04 

.02 

.Of .02 .04 .06 '08 10 20 .40 .60 80 100 

FIGURE 3.-Plot of 12fl against y for various data from reference 9. t u  6 

In  parallel to the two-dimensional boundary-layer theory, 
the following definitions are made: 

The relations among the various thicknesses may then be 
writ ten 

6]=HO, 1 
O,, = e JO, 

6:=eKO, 

oz = e2L 0, 
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The quantities H,  J, K,  and L are functions of G and g. 
Because G and g are representative of the velocity profiles in 
the boundary layer, the changes in these velocity profiles 
must be reflected in turn in the values of H ,  J, K, and L. 
I n  other words, the external forces acting on the boundary 
la)-er and influencing the changes in the shape of the velocity 
profiles also cause a variation in H,  J, K, and L. Unfortu- 

I I I  I I I I l l  I I N I  I I (  1 1  1 l(4l I I I I I I ]  I I I IWI 1 1  
0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Y/* 

Y/* 
(a) Experimental relocity profile from reference 9 (point 15,111). Data obtained in curved 

(b) Experimental velocity profile of reference 12mnverted toz, y, zcoordinate system. Data 

FIGURE I.--Comparison of sssumed G and Go with experimental velocity profiles. Assumed 

duct; 6= 40 millimeters. 

obtained in boundary layer of yawed wing. 

profiles: G=(v/d)w; Gr=(g/6)m (l-y/&)S. 

VI 6 
FICUBE fi.--Compmison of assumed mrrection function g(y/6) with data of reference 12 eon- 

verted to I, y, t coordinate system. .4ssumption: &/,?) =(l-yp)z. 

nately, the available data of reference 9 do not involve 
large changes in the shape of the velocity profiles and the 
quantities H, J, K, and L. This brliavior of the velocity 
profiles is verified in figure 3 .  The data of reference 12 do 
indicate large changes in the shape of the velocity profile; 
hoi\-ever, the data arc not presented with sufficient detail to 
permit an accurate cvaluation of H ,  J, K, and L. Thus, 
until more extensive experimental data become available, 
the quantities H, J, K,  and L are assumed to be constants 
that can be evaluated either by assuming a suitable form for 
G and g or by computing directly from Gruschwitz data. 

In  accordance with reference 9, good assuxnptions for G 
and p are: 

An indication of the degree of fit afforded by these expres- 
sions can be obtained from figure 4 (a), where a calculated 
profile with n=7 is compared with one of the profiles of 
Gruschu-itz. Other profiles of Gruschwitz data give similar 
results. It should be noted that this good agreement should 
not be interpreted as meaning that assumptions (29) will 
always give a good representation of the velocity profiles in 
the threedimensional turbulent boundary layer. Figure 4 (b) 
shows a comparison similar to that of figure 4(a) with pro- 
files converted to the qy,z system using data from reference 
12. Equations (29) do not afford a good fit in figure 4@), 
although the equations do represent the general behavior 
of the velocities. This comparison is further illustrated in 
figure 5, where the value of g (y/6) as obtained by converting 
the profiles of reference 12 to the z,y,z system a t  indicated 
points is compared with (1-y/6)*. 

With the use of relations (29), H ,  J, K ,  and L are com- 
puted as 

which for n=7 give 

H= 1.2857 

J=0.5423 

K= 2.6727 

L=1.1285 
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Averaging the values along line I11 of Gruscliwitz data 
(fig. 2 )  results in 

H= 1.37 

J=0.550 

K=2.43 

L=0.968 

This relatively good agreement between the two sets of 
values is also indicative of the over-all fit of the assumed 
expressions for G and g to the data of reference 9. 

The additional relation that is needed for the solution of 
the momentum-integral equation is the expression for surface 
friction. In reference 9, Gruschwitz demonstrates that 
Kkmhn's friction law 

appears to be valid in the three-dimensional boundary layer 
as well. Substituting relations (26), (28), and (31) in 
equations ( 2 3 )  yields 

be, 0 bl' a 0, be 
bx c dx dZ bz 1. " - P I  
-+4- (2+H)+Je --+J02--4 2 J e O  -I-'i,i (32a) 

and 

be 0" be e2 

dz b z  b G  2L0,E -+Le2 -+(K-J)o,  -+(K-J)E &+ 

0 bl' 0 bl' 2w, 7 0  2 

I, bz c bz  c- I--€--- P 1.-' ( L 2 -  1 - H )  4 -+2(K-J)e r --(1+ LE2) - 0 - 

Because of tlie form of the relation for friction, an advan- 
tageous transformation of variable is 

O=O,Re'l' (33) 

in order to eliminate the Reynolds number from tlie equa- 
tions. 

With the use of equations (33) and (12), two nonlinear 
partial differential equations for 8 and E applying along z=O 
are obtained from equations ( 3 2 ) ,  

4 b0 4 d e  - -+- JE -+ J0 -+ 
5 b x  5 d z  

(34a) 
1 

~~ G E - -  JE 4 0 - 0 . 0 1 2 5 5 \ - 0  
5 l 8  5 1  "I i- 

and 

4 b0 4 de de 
5 bx 5 b z  bX 
- (K-J)E -+- Le2 E+(K-J)O -+2L0e 2+ 

[; (K-J)e - _- I"-% (5 1 Le*- 1 --H c 0 -  

As shown in the appendix, these equations can be either 
hyperbolic, parabolic, or elliptic, depending on the shape of 
the velocity profiles existing in the boundary layer. For 
u= U(y/6)'In and g= ( 1 - ~ / 6 ) ~ ,  the equations are always 
elliptic. 

Simplification of equations and approximate solution.- 
The relative importance of the various derivatives in equa- 
tions (34) is now determined. First, 8 and E are assumed to 
be quantities that are smaller than one, which can be accom- 
plished simply bj- rer'erring all lengths to a total path length 
S and a to 45O. As a result of this assumption, all deriva- 
tives in 8 and e become of the order of magnitude of 8 or e .  
Equation (34a) is then divided by 4/5, so that the coefficient 
of bO/bx is 1 and the coefficients of b8lbz and de/bz  are J E  
and 4 J8, that is, of the order of magnitude of e and 8, 

respectively. In  a similar way equation (34b) is divided b>- 
(K- J)0 so that the coefficients of b@/bx and be/bz become 
4 
- e / @  and 1 (order of magnitude of one), respectively, and 5 

4 € 2  those of b0/b2 and be/bz become - L e and 2L e (order of 5 
magnitude of e ) ,  respectively. Then, if E is small as com- 
pared with tan 45' and e is small when compared with S, all 
terms of the order of magnitude of 2, @e, and 0' may bc 
neglected, which gives 

5 

and 

These two expressions show that the primary changes in 
e and e in equations (34a) and (341)) occur only in the 
2-direction and thus the description of the phenomena only 
a t  z=O is justified. 

A solution of equations ( 3 5 )  can now be obtained by suc- 
cessive approximations because U, my, and c are assumed to 
be known functions of 2. First, equation (35a) is solved, 

The values of @ , ( J )  are then used in an approsirnate solution 
of equation (35b) 

d 4 

where 
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With sl(x) known, the approximation for 0 could in turn 
be improved by again solving equation (35a). If a grows 
large along the path, however, it is more advantageous to 
consider the following equation : 

(3 9) 

I t  is thus hoped that neglectionof bsjbz will not affect theac- 
curacy of the solution to a very marked extent. The solution 
of equation (39), which may be obtained by the method of 
Lagrange, is 

where 

and 

is an  arbitrary function satisfying the boundary condition; 
when x = x f  and z=O, then 811=8r. Setting 

a t  x = x ,  gives X=O. 
magnitude of E. 

In addition, for z=O, X is of the order of 

Expansion of $ in llaclaurin's series about X(x,) yields 

7 

Because there is only one boundary condition, it is possible 
to determine only one of the constants in this expansion; 
consequently, # cannot be uniquely established. The fact 
that X is of the order of magnitude of e, however, suggests 
that the assumptions made for $"(O), $'"(O), and so forth, 
are successively less important. Thus these derivatives may 
arbitrarily be expressed by a single constant, 

(4 3) 

where A from purely dimensional considerations must have 
the dimensions of 1-'. From expressions (41) and (42), it is 
suspected that 

(44) 

where B must be obtained from the experimental measure- 
ments. 

It should be noted that because #(A) cannot be uniquely 
determined other functions of X satisfying the single boundary 
condition could be used as well. The function eAX is chosen 
only because it is convenient to use and parallels the expres- 
sions (41) and (42). This arbitrariness of the functional form 
of 4 and the value of A is due to the consequences of assuming 
z=O, and thus i t  is probably not advisable to carry any 
further approximation for sII and so forth. 

In  solving equations (36) to (44), either set of values for 
H,  J ,  K,  and L may be used. Because the averaged values 
(30b) are probably more representative, having been obtained 
by evaluating experimental data at a number of different 
positions, it is advantageous to use these values in com- 
putations. 

COMPARISON WITH EXPERIMENT 

In  order to check the validity of the approximate solution, 
the boundary layer along four streamlines of reference 9 was 
computed and compared with the measured values. The 
designation of the streamlines and data points is illustrated 
in figure 2 .  Because the data were taken along curves I to 
V of figure 2 ,  the computation along a streamline requires 
first an interpolation among the various data points. As a 
result of this interpolation, the computations could not be 
carried through the full length of each streamline. Values 
(30b) were used for quantities H,  J ,  K ,  and L. The constant 
B was obtained by fitting along streamline 6 the solution 
for eII, so that at x=S, 011-0 measured. In  this manner, 
the value of B was found to be 38.5. This value was then 
used in computations of streamlines A ,  C, and D. It is 
noted that B=38.5-7(Re1l4),, although justification for such 
a dependence cannot be made. I n  all integrations Simpson's 
rule was used. 

The rcisults of the computations are plotted in a nondi- 
mcnsional form and compared with the interpolated measured 
values in figures 6 and 7. A study of these figures reveals 
a fair quantitative agreement between the measured and 
estimated values of 8 and CY. As the values of €-+tan 4 5 O  
(fig. 7) the first approximation for 0 in figure 6 becomes 
progressive1)- worse, which is remedied by the second approx- 
imation. The poorest agreement is obtained along stream- 
lines A and D, which because they are closest to the walls 
might be affected by the flow in the corners of the duct. 
Streamline D especially may be affected inasmuch as 
Gruschwitz mentions the existence of separation on the 
convex wall. 

The fair quantitative agreement with the measured values 
is not to be interpreted as a conclusive check of the validity 
of the procedure and the assumed values in all cases of three- 
dimensional boundarjT-laj-er flow. The suggested procedure 
simply represents the best that can be done in view of the 
meagerness of the available data. Because the Gruschwitz 
data do not involve the effects of uniform angular velocity 
and because the variations in ~ and - __ are small, 1 au 1 bU 

I5 a x  u br  
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i t  could be maintained that this check of the procedure has 
been carried out on a somewhat special case. For that 
reason, it is desirable that additional experiments be carried 
out in setups that eliminate the present shortcomings. A 
larger variation of Reynolds number should also be used. 
With additional experiments, a modification of the values 
of H ,  J, K ,  L, and B, together perhaps with some refinements 
of the procedure, will be in order. I t  might be well to remem- 
ber, at such time, that because of the necessary empiricism 
involved (which results from the very limited knowledge of 
turbulent phenomena), long and tedious computations would 
rarely be worthwhile. 

CONCLUSIONS 

The following conclusions can be drawn from an analysis 
of the three-dimensional momentum-integral equations and 
a comparison of the numerical results with the Gruschwitz 
data for turbulent boundary layer: 

1. Within the boundary layer the static pressure can vary 

a t  most by an amount of the order of magnitude of the 
boundary-layer thickness 6. 

2. It is possible to generalize the velocities in the boundary 
layer bj- use of two characteristic quantities 6 and E where 
E is the tangent of the angle enclosed by the direction of the 
resultant skin-friction stress and the direction of the flow 
outside the boundary layer. 

3. When the generalized boundary-layer momentum-loss 
thickness 8 is small as compared with the total path length 
and 4 is small as compared with tan 4 5 O ,  the primary changes 

0 
Distonce dong sireomhne, x/S 

(a) Streamline A: S=22.8 inches. 

.4 .6 .8 
Disiance d o n g  streomline, tj/S 

(b) Streamline 6;  9=34.75 inches. 

? 
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in 0 and. E occur along the streamline of the flow outside the 
boundary layer. 
4. The three-dimensional boundary-layer momcntum- 

integral equations can be either hyperbolic, parabolic, or 
elliptic, depending on the relative magnitude of the parameter 
MN, which in turn dcpends on the shape of the  velocity 

(r) Streamline C: S=Bi.R inches. 

profiles existing in the boundary layer. The power-law 
profile when used with the correction function g= ( 1 - ~ / 6 ) ~  
always results in elliptic equations. 

5 .  The approximate solution of the three-dimensional 
momentum-integral equations shows a fair quantitative 
agreement with the values measured by Gruschwitz. 

6. Additional experimental data are necessary to establish 
more generally applicable values for form parameters H ,  
J ,  K ,  and L and B, the constant used in thc second approxi- 
mation for 8. 

LEWIS F L I G H T  PROPULSION IIABOHATORY 

NATIONAL ADVISORY COMMITTEE: FOR AERONriUTICS 

CLEVELAND, OHIO, November I, 1950 

(d) Streamlinc D S=21.25 inches. 



APPENDIX 
ADDITIONAL REMARKS ON THREE-DIMENSIONAL 

BOUNDARY-LAYER MOMENTUM-INTEGRAL EQUATIONS 

In  order to obtain the approximate solution of equation@@, 
it was show-n by comparing the relative order of mag- 
nitude of the coefficients that some of the terms may be 
neglected. Care must be taken with such simplifications 
inasmuch as various implications of the equations in question 
may be obscured by this procedure. For this reason, aside 
from the approximate solution, the character of equations (34) 
was also investigated in detail. 

By use of the procedure outlined in reference 18 (p. 38), 
along z=O the system of equations (34) is found to be 
hyperbolic when A4N> 1 , elliptic when MN< 1 , and para- 
bolic when MN=1, where 

Because J ,  K,  and L are functions of Gand g, the character 
of equation (34) depends on the shape of the velocity profiles 
in the boundary layer. 

It should be noted that when MN=O, then L=O, which is 
only possible if G=O or g=O, and in turn u=O or w=O. If 
the trivial case u=O is neglected, it is established that when 
w=O, e = O  as well. But for e = O  and w=O, equations (34) 
reduce to a special case 

and 
2 w ,  1+u ~- 0.01255 
I’ H e 

Here equation (46a) is an ordinary two-dimensional boundary- 
layer momentum-integral equation for e and equation (46b) 
is a relation that evidently must exist among 77, bU/bs, 
wy, and 0, when e = O  and w=O. 

When the equations are elliptic, no real characteristic 
direction can be found. When only one characteristic direc- 
tion exists, the equations are parabolic and in the hyperbolic 
case two characteristic directions through each point of the 
zz-plane are obtained. For the parabolic case then, 

and for the hyperbolic case, 

and the characteristic lines are asymmetric with respect to 
the x-axis. In order to determine whether elliptic, parabolic, 
or hyperbolic equations apply, the magnitude of MN is com- 
puted. Substituting from expressions (30), 214N is obtained 
in terms of n:  

6(3n+ 1) (3n f2 )  
(5n+ 2) 

MN= 

This equation shows MN to be a monotonically increasing 
function of n .  For n=O, 

6 214N=- 7 
and 

54 l i m  MA7=- 
n-m 55 

These results indicate that a so-called power-law profile when 
used with g= (1-y/6)’ always results in equations that 
although elliptic are very near to being parabolic. Using 
values (30b) , 

MhT= 0.936 

which again indicates an elliptic character of the equations. 
It should be remembered, however, that the assumptions for 
G and g were made on the basis of only one set of data; con- 
sequently there is no assurance that the velocity distributions 
existing in the boundary layer mill always give the same 
values of MA7. In  fact, i t  is generally more likely that they 
will not give the same values of MN. Some indication of the 
variation of MAT may already be obtained from figure 8, 

4 5 6 7 8 9 I O  / I  /Z 13 /4 15 /6 17 18 /9 20 
Position of data poinfs 

FIGURE B.-Vslues of parnmeter MNfor data of reference Y. 

15 
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wlicrc its valuc was plotted for each Grusc*liwitz tlnta point. 
At points 5 ,  6, and 7, how-ever, small valiws of w may havc 
prevented an accurate determination of L and as a con- 
sequence MN=O there. The value of MAr in figure 8 
varies within the limits 0.65<MN<1.2, with thc bulk of the 
points indicating that MN-0.95. 

On the basis of thc preccding discussion, thcrcl is some 
cvidcnce of the equations being parabolic, elliptic, and hypcr- 
bolic in the turbulent boundary layer. It is interesting to 
note that generally (as in supersonic and subsonic flow, for 
instance) these hyperbolic and elliptic regions have their 
counterpart in physical phenomena. Thus some essential 
diff erences might exist in the process of momentum transfer 
between the hyperbolic and elliptic regions. These differ- 
ences cannot now be ascertained because first equations sim- 
ilar to (34) with z#O would have to be obtained, and there 
is no mention of any irregularities in the behavior of the flow 
in reference 9 .  When additional experiments are made, 
however, it would seem advisable to study closely these two 
mathematical regions in order to obtain some indication of 
thc physical makc-up of their cliff erences. 
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